Almost Classical Skew Bracoids and the Yang-Baxter

Equation

Isabel Martin-Lyons

Hopf Algebras and Galois Module Theory, Omaha $28^{\text {th }}$ of May 2024

Aim

Skew bracoids that correspond to Hopf-Galois structures on almost classical extensions lead to solutions to the Yang-Baxter equation in the manner outlined earlier today.

Question

What is special about these solutions?

Outline

(1) Fundamental Definitions and Examples
(2) Almost classical skew bracoids
(3) The γ-function and solutions to the Yang-Baxter Equation

Outline

(1) Fundamental Definitions and Examples
(2) Almost classical skew bracoids
(3) The γ-function and solutions to the Yang-Baxter Equation

Skew braces and bracoids

Definition

A skew (left) brace is a triple (G, \star, \cdot), where (G, \star) and (G, \cdot) are groups and for all $g, h, f \in G$

$$
g \cdot(h \star f)=(g \cdot h) \star g^{-1} \star(g \cdot f) .
$$

Definition

A skew (left) bracoid is a 5-tuple $(G, \cdot, N, \star, \odot)$, where (G, \cdot) and (N, \star) are groups and \odot is a transitive action of G on N for which

$$
g \odot(\eta \star \mu)=(g \odot \eta) \star\left(g \odot e_{N}\right)^{-1} \star(g \odot \mu)
$$

for all $g \in G$ and $\eta, \mu \in N$.

Housekeeping

- We will frequently write (G, N, \odot) or (G, N), for $(G, \cdot, N, \star, \odot)$.
- We will refer to (N, \star) as the additive group and (G, \cdot) as the multiplicative or acting group.
- Any identity will be denoted e, possibly with a subscript.

For example

Examples

- If (G, \cdot) is a group then (G, \cdot, \cdot) and $(G, \cdot o p, \cdot)$ are skew braces, the so-called trivial and almost trivial skew braces on G.
- Any skew brace (G, \star, \cdot) can be thought of as a skew bracoid $(G, \cdot, G, \star, \odot)$, where \odot is simply \cdot. If (G, N) is a skew bracoid with $\operatorname{Stab}_{G}\left(e_{N}\right)$ trivial we say that (G, N) is essentially a skew brace, since we can use the bijection $g \leftrightarrow g \odot e_{N}$ to transfer the operation in G onto N to give a skew brace on N.
- For any group G we have the skew bracoid $(G,\{e\}, \odot)$ where of course the action \odot is trivial.

Something more concrete

Examples

- Let $d, n \in \mathbb{N}$ such that $d \mid n$. Take
$G=\left\langle r, s \mid r^{n}=s^{2}=e, s r s^{-1}=r^{-1}\right\rangle \cong D_{2 n}$ and $N=\langle\eta\rangle \cong C_{d}$. Then we get a skew bracoid (G, N, \odot) for \odot given by

$$
r^{i} s^{j} \odot \eta^{k}=\eta^{i+(-1)^{j} k}
$$

Outline

(1) Fundamental Definitions and Examples

(2) Almost classical skew bracoids
(3) The γ-function and solutions to the Yang-Baxter Equation

Containing a brace

Definition

We say that a skew bracoid (G, N) contains a brace if the subgroup $S=\operatorname{Stab}_{G}\left(e_{N}\right)$ has a complement H in G, so that $G=H S$.

This is equivalent to saying that G contains a subgroup H for which (H, N) is essentially a skew brace.

Definition

A skew bracoid (G, N) is almost a skew brace if the subgroup $S=\operatorname{Stab}_{G}\left(e_{N}\right)$ has a normal complement in G, so that $G=H S \cong H \rtimes S$.

Almost classical skew bracoids

Definition

A skew bracoid (G, N) is almost classical if the subgroup $S=\operatorname{Stab}_{G}\left(e_{N}\right)$ has a normal complement H in G, and when thought of as a skew brace, (H, N) is trivial. Hereafter we will say that such a (H, N) is essentially trivial.

This is saying that when the operation in H is transferred to N, it coincides with the original operation in N. Explicitly this means, for all $h_{1}, h_{2} \in H$

$$
\left(h_{1} \odot e_{N}\right) \star\left(h_{2} \odot e_{N}\right)=h_{1} h_{2} \odot e_{N},
$$

and consequently

$$
\left(h_{1} \odot e_{N}\right)^{-1}=h_{1}^{-1} \odot e_{N} .
$$

Members of our Dihedral Cyclic Family

Example

Consider $(G, N) \cong\left(D_{2 n}, C_{d}\right)$, using $r^{i} s^{j} \odot \eta^{k}=\eta^{i+(-1)^{j} k}$. Then $S=\operatorname{Stab}_{G}\left(e_{N}\right)=\left\langle r^{d}, s\right\rangle$ since $r^{i} s^{j} \odot e_{N}=\eta^{i}$.

- Take $n=24$ and $d=4$, then $S=\left\langle r^{4}, s\right\rangle$ has no complement in D_{48} so (D_{48}, C_{4}) does not contain a brace.
- Take $n=12$ and $d=6$, then $S=\left\langle r^{6}, s\right\rangle$ has the complement $\left\langle r^{4}, r s\right\rangle$ but no normal complements so (D_{24}, C_{6}) contains a brace but no more.
- Take $n=12$ and $d=4$, then $S=\left\langle r^{4}, s\right\rangle$ has the complement $H=\left\langle r^{6}, r s\right\rangle$ which is non-normal so $\left(D_{24}, C_{4}\right)$ contains the brace (H, N). But S also has $R=\left\langle r^{3}\right\rangle$ as a normal complement in D_{24}, moreover (R, N) is essentially trivial so $\left(D_{24}, C_{4}\right)$ is almost classical.

Reduced Members of our Dihedral Cyclic Family

Example

Skew bracoids of the form $(G, N) \cong\left(D_{2 n}, C_{d}\right)$ are reduced precisely when $n=d$, in which case $S=\langle s\rangle$.

- We always have $R=\langle r\rangle$ as a normal complement to S, and since (R, N) is essentially trivial these skew bracoids are almost classical.
- If n is even, we additionally have $H=\left\langle r^{2}, r s\right\rangle$ as a normal complement to S, but here $(H, N) \cong\left(D_{n}, C_{n}\right)$ is not essentially trivial so $\left(D_{2 n}, C_{n}\right)$ is almost the skew brace $\left(D_{n}, C_{n}\right)$.

Outline

(1) Fundamental Definitions and Examples
(2) Almost classical skew bracoids
(3) The γ-function and solutions to the Yang-Baxter Equation

The γ-function

Definition/Proposition

Given a skew bracoid ($G, \cdot, N, \star, \odot$), we define the map
$\gamma:(G, \cdot) \rightarrow \operatorname{Perm}(N, \star)$, sending g to γ_{g}, by

$$
\gamma_{g}(\eta)=\left(g \odot e_{N}\right)^{-1} \star(g \odot \eta),
$$

for $g \in G$ and $\eta \in N$.

Then γ is in fact a homomorphism, with image in $\operatorname{Aut}(N, \star)$. We call this map the γ-function of the skew bracoid.

Recall that this is the backbone of the route from a skew bracoid to a solution to the Yang-Baxter equation.

The γ-function of an almost classical skew bracoid

Let (G, N) be an almost classical skew bracoid with H such that $G \cong H \rtimes S$ and (H, N) is essentially a trivial skew brace.

Let $h, h_{\eta} \in H$ and $s \in S$ then,

$$
\begin{aligned}
\gamma_{h s}\left(h_{\eta} \odot e_{N}\right) & =\left(h s \odot e_{N}\right)^{-1} \star\left(h s \odot\left(h_{\eta} \odot e_{N}\right)\right) \\
& =\left(h \odot e_{N}\right)^{-1} \star\left(h s h_{\eta} \odot e_{N}\right) \\
& =\left(h^{-1} \odot e_{N}\right) \star\left(h s h_{\eta} s^{-1} \odot e_{N}\right) \\
& =s h_{\eta} s^{-1} \odot e_{N}
\end{aligned}
$$

So we conjugate by the S part and the H part acts trivially.

Example

In the $G=\langle r, s\rangle \cong D_{2 n}$ acting on $N=\langle\eta\rangle \cong C_{n}$ example, using $R=\langle r\rangle$, we have $\gamma_{r^{i} s^{j}}\left(\eta^{k}\right)=s^{j} r^{k} s^{-j} \odot e_{N}=\eta^{(-1)^{j} k}$.

The Yang-Baxter Equation

Definition

A solution to the set-theoretic Yang-Baxter equation (hereafter simply a solution) is a non-empty set G, together with a map $r: G \times G \rightarrow G \times G$ satisfying

$$
(r \times 1)(1 \times r)(r \times 1)=(1 \times r)(r \times 1)(1 \times r)
$$

as functions on $G \times G \times G$.

Given a solution r on G, for all $x, y \in G$ we write

$$
r(x, y)=\left(\lambda_{x}(y), \rho_{y}(x)\right)
$$

so that we have family of maps $\lambda_{x}: G \rightarrow G$ and a family of maps $\rho_{y}: G \rightarrow G$.

Properties of the Solution

Suppose G with r is a solution and write $r(x, y)=\left(\lambda_{x}(y), \rho_{y}(x)\right)$. We say this solution is:

- bijective if r is bijective;
- left non-degenerate if λ_{x} is bijective for all $x \in G$;
- right non-degenerate if ρ_{y} is bijective for all $y \in G$;
- non-degenerate if r is both left and right non-degenerate.

Example

- The trivial solution $r(x, y)=(x, y)$ is bijective and degenerate.
- The twist solution $r(x, y)=(y, x)$ is bijective and non-degenerate.

Solutions from skew bracoids

Let (G, N) be a skew bracoid that contains a brace (H, N). We have that the map $a: h \mapsto h \odot e_{N}$ is a bijection between H and N, we write b for its inverse. Recall that with this we can define

$$
\lambda_{x}(y)=b\left(\gamma_{x}\left(y \odot e_{N}\right)\right)
$$

and then

$$
\rho_{y}(x)=\lambda_{x}(y)^{-1} x y
$$

for all $x, y \in G$.

This λ and ρ form a Lu-Yan-Zhu pair so that G with $r(x, y)=\left(\lambda_{x}(y), \rho_{y}(x)\right)$ forms a (right non-degenerate but possibly left degenerate) solution.

A matched product

Given this setup, we have that

- H with r is a bijective non-degenerate solution - the one coming from the (essentially a) skew brace (H, N);
- and restricting to S we have

$$
\lambda_{s_{1}}\left(s_{2}\right)=b\left(\gamma_{s_{1}}\left(s_{2} \odot e_{N}\right)\right)=e_{G}, \quad \rho_{s_{2}}\left(s_{1}\right)=s_{1} s_{2}
$$

for $s_{1}, s_{2} \in S$, so we get an entirely left degenerate sub-solution - if you like, the one coming from the skew bracoid $(S,\{e\})$.
In general, the solution on G is a matched product of these two sub-solutions. This via $\alpha: S \rightarrow \operatorname{Perm}(H)$ and $\beta: H \rightarrow \operatorname{Perm}(S)$ given by $\alpha_{h}(s)=\left(\rho_{h^{-1}}\left(s^{-1}\right)\right)^{-1}$ and $\beta_{s}(h)=\lambda_{s}(h)$.

Solutions from almost a skew brace

If the skew bracoid (G, N) is almost a skew brace, so our complement H to S is normal in G, the actions $\alpha: S \rightarrow \operatorname{Perm}(H)$ and $\beta: H \rightarrow \operatorname{Perm}(S)$ are transparently the actions of S on H and H on S within G.
For $s \in S$ and $h \in H$ we have,

$$
\begin{aligned}
& \beta_{s}(h)=\lambda_{s}(h)=b\left((s \odot e)^{-1}(s \odot(h \odot e))\right)=b(s h \odot e)=s h s^{-1} \\
& \text { and } \\
& \alpha_{h}(s)=\left(\rho_{h^{-1}}\left(s^{-1}\right)\right)^{-1} \\
& \\
& =\left(\lambda_{s^{-1}}\left(h^{-1}\right)^{-1} s^{-1} h^{-1}\right)^{-1} \\
& \\
& =\left(\left(s^{-1} h^{-1} s\right)^{-1} s^{-1} h^{-1}\right)^{-1} \\
& \\
& =\left(s^{-1} h s s^{-1} h^{-1}\right)^{-1} \\
&
\end{aligned}
$$

Almost classical solutions

Suppose (G, N) is almost classical due to a subgroup H of G, i.e. (H, N) is essentially trivial. Taking $h_{1}, h_{2} \in H$ and $s_{1}, s_{2} \in S$, the solution arising from (G, N) is the given by

$$
\begin{aligned}
\lambda_{h_{1} s_{1}}\left(h_{2} s_{2}\right) & =b\left(\gamma_{h_{1} s_{1}}\left(h_{2} \odot e_{N}\right)\right) \\
& =b\left(s_{1} h_{2} s_{1}^{-1} \odot e_{N}\right) \\
& =s_{1} h_{2} s_{1}^{-1} \\
\rho_{h_{2} s_{2}}\left(h_{1} s_{1}\right) & =s_{1} h_{2}^{-1} s_{1}^{-1} h_{1} s_{1} h_{2} s_{2} .
\end{aligned}
$$

Note that restricting to H we recover the solution given by

$$
\lambda_{h_{1}}\left(h_{2}\right)=h_{2}, \quad \rho_{h_{2}}\left(h_{1}\right)=h_{2}^{-1} h_{1} h_{2},
$$

which is a solution coming from the group H.

Almost Classical Running Example

Example

In our $(G, N) \cong\left(D_{2 n}, C_{n}\right)$ example taking the complement $R=\langle r\rangle$ we have

$$
\begin{aligned}
\lambda_{r^{\prime} i s i}\left(r^{k} s^{\ell}\right) & =s^{j} r^{k} s^{-j} \\
& =r^{(-1)^{j} k},
\end{aligned}
$$

and

$$
\begin{aligned}
\rho_{r^{k} s^{\ell}}\left(r^{i} s^{j}\right) & =s^{j} r^{-k} s^{-j} r^{i} s^{j} r^{k} s^{\ell} \\
& =r^{-(-1)^{j} k+i+(-1)^{j} k} s^{j+\ell} \\
& =r^{i} s^{j+\ell} .
\end{aligned}
$$

Hence G with $\mathbf{r}\left(r^{i} s^{j}, r^{k} s^{\ell}\right)=\left(r^{(-1)^{j} k}, r^{i} s^{j+\ell}\right)$ is a solution.

Almost a skew brace Running Example

Example

Suppose now that n is even and take the complement $H=\left\langle r^{2}, r s\right\rangle$ to S in $G \cong D_{2 n}$.

It is convenient to transfer the operation from N onto H. To do this note that

$$
b(\eta)=r s, \quad b\left(\eta^{2}\right)=r^{2}, \quad b\left(\eta^{3}\right)=r^{3} s, \quad b\left(\eta^{4}\right)=r^{4}, \ldots
$$

so we may think of H as a subgroup of $C_{n} \times C_{2}$ with $r s$ as a generator.

Then the action of G on H can be thought of as $r^{i} s^{j} \odot(r s)^{k}=(r s)^{(-1)^{j} k, ~}$ essentially as before.

Almost a skew brace Running Example

Example

Then with the skew bracoid written (G, H) we have,

$$
\begin{aligned}
\lambda_{r^{i} s^{j}}\left(r^{k} s^{\ell}\right) & =b\left(\gamma_{r^{i} s^{j}}\left((r s)^{k}\right)\right) \\
& =b\left((r s)^{(-1)^{j} k}\right) \\
& =b\left(r^{(-1)^{j} k} s^{(-1)^{j} k}\right) \\
& =r^{(-1)^{j} k} s^{k}, \\
\rho_{r^{k} s^{\ell}}\left(r^{i} s^{j}\right) & =\lambda_{r^{i} s^{j}}\left(r^{k} s^{\ell}\right)^{-1} r^{i} s^{j} r^{k} s^{\ell} \\
& =s^{k} r^{-(-1)^{j} k} r^{i+(-1)^{j} k} s^{j+\ell} \\
& =r^{(-1)^{k} i} s^{j+k+\ell} .
\end{aligned}
$$

Hence G with $\mathbf{r}\left(r^{i} s^{j}, r^{k} s^{\ell}\right)=\left(r^{(-1)^{j} k} s^{k}, r^{(-1)^{k} i} s^{j+k+\ell}\right)$ is a solution.

Open Questions

- What does this mean for the study of solutions using skew bracoids?
- I didn't give the solutions coming from the non-reduced skew bracoids, partially because they were a pain - especially in general am I missing something?
- How is the solution on a skew bracoid related to the solution on its reduced form?

Thank you for your attention!

