Almost Classical Skew Bracoids and the Yang-Baxter Equation

Isabel Martin-Lyons

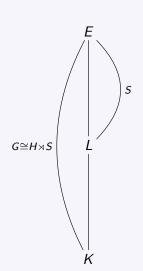
Hopf Algebras and Galois Module Theory, Omaha 28th of May 2024

Aim

Skew bracoids that correspond to Hopf-Galois structures on almost classical extensions lead to solutions to the Yang-Baxter equation in the manner outlined earlier today.

Question

What is special about these solutions?



Outline

1 Fundamental Definitions and Examples

2 Almost classical skew bracoids

3 The γ -function and solutions to the Yang-Baxter Equation

Outline

• Fundamental Definitions and Examples

2 Almost classical skew bracoids

 $oxed{3}$ The γ -function and solutions to the Yang-Baxter Equation

Skew braces and bracoids

Definition

A *skew (left) brace* is a triple (G,\star,\cdot) , where (G,\star) and (G,\cdot) are groups and for all $g,h,f\in G$

$$g \cdot (h \star f) = (g \cdot h) \star g^{-1} \star (g \cdot f).$$

Definition

A skew (left) bracoid is a 5-tuple $(G, \cdot, N, \star, \odot)$, where (G, \cdot) and (N, \star) are groups and \odot is a transitive action of G on N for which

$$g \odot (\eta \star \mu) = (g \odot \eta) \star (g \odot e_N)^{-1} \star (g \odot \mu),$$

for all $g \in G$ and $\eta, \mu \in N$.

Housekeeping

- We will frequently write (G, N, \odot) or (G, N), for $(G, \cdot, N, \star, \odot)$.
- We will refer to (N, \star) as the additive group and (G, \cdot) as the multiplicative or acting group.
- Any identity will be denoted e, possibly with a subscript.

For example

Examples

- If (G, \cdot) is a group then (G, \cdot, \cdot) and (G, \cdot^{op}, \cdot) are skew braces, the so-called *trivial* and *almost trivial* skew braces on G.
- Any skew brace (G, \star, \cdot) can be thought of as a skew bracoid $(G, \cdot, G, \star, \odot)$, where \odot is simply \cdot . If (G, N) is a skew bracoid with $\operatorname{Stab}_G(e_N)$ trivial we say that (G, N) is essentially a skew brace, since we can use the bijection $g \leftrightarrow g \odot e_N$ to transfer the operation in G onto N to give a skew brace on N.
- For any group G we have the skew bracoid $(G, \{e\}, \odot)$ where of course the action \odot is trivial.

Something more concrete

Examples

• Let $d, n \in \mathbb{N}$ such that d|n. Take

$$G=\langle r,s\mid r^n=s^2=e,srs^{-1}=r^{-1}
angle\cong D_{2n}$$
 and $N=\langle \eta
angle\cong C_d$.

Then we get a skew bracoid (G, N, \odot) for \odot given by

$$r^i s^j \odot \eta^k = \eta^{i+(-1)^j k}$$
.

Outline

1 Fundamental Definitions and Examples

2 Almost classical skew bracoids

3 The γ -function and solutions to the Yang-Baxter Equation

Containing a brace

Definition

We say that a skew bracoid (G, N) contains a brace if the subgroup $S = \operatorname{Stab}_G(e_N)$ has a complement H in G, so that G = HS.

This is equivalent to saying that G contains a subgroup H for which (H, N) is essentially a skew brace.

Definition

A skew bracoid (G, N) is almost a skew brace if the subgroup

 $S = \operatorname{Stab}_G(e_N)$ has a normal complement in G, so that $G = HS \cong H \rtimes S$.

Almost classical skew bracoids

Definition

A skew bracoid (G, N) is almost classical if the subgroup $S = \operatorname{Stab}_G(e_N)$ has a normal complement H in G, and when thought of as a skew brace, (H, N) is trivial. Hereafter we will say that such a (H, N) is essentially trivial.

This is saying that when the operation in H is transferred to N, it coincides with the original operation in N. Explicitly this means, for all $h_1, h_2 \in H$

$$(h_1 \odot e_N) \star (h_2 \odot e_N) = h_1 h_2 \odot e_N,$$

and consequently

$$(h_1 \odot e_N)^{-1} = h_1^{-1} \odot e_N.$$

Members of our Dihedral Cyclic Family

Example

Consider $(G, N) \cong (D_{2n}, C_d)$, using $r^i s^j \odot \eta^k = \eta^{i+(-1)^j k}$. Then $S = \operatorname{Stab}_G(e_N) = \langle r^d, s \rangle$ since $r^i s^j \odot e_N = \eta^i$.

- Take n=24 and d=4, then $S=\langle r^4,s\rangle$ has no complement in D_{48} so (D_{48},C_4) does not contain a brace.
- Take n=12 and d=6, then $S=\langle r^6,s\rangle$ has the complement $\langle r^4,rs\rangle$ but no normal complements so (D_{24},C_6) contains a brace but no more.
- Take n=12 and d=4, then $S=\langle r^4,s\rangle$ has the complement $H=\langle r^6,rs\rangle$ which is non-normal so (D_{24},C_4) contains the brace (H,N). But S also has $R=\langle r^3\rangle$ as a normal complement in D_{24} , moreover (R,N) is essentially trivial so (D_{24},C_4) is almost classical.

Reduced Members of our Dihedral Cyclic Family

Example

Skew bracoids of the form $(G, N) \cong (D_{2n}, C_d)$ are reduced precisely when n = d, in which case $S = \langle s \rangle$.

- We always have $R = \langle r \rangle$ as a normal complement to S, and since (R, N) is essentially trivial these skew bracoids are almost classical.
- If n is even, we additionally have $H = \langle r^2, rs \rangle$ as a normal complement to S, but here $(H, N) \cong (D_n, C_n)$ is not essentially trivial so (D_{2n}, C_n) is almost the skew brace (D_n, C_n) .

Outline

1 Fundamental Definitions and Examples

2 Almost classical skew bracoids

3 The γ -function and solutions to the Yang-Baxter Equation

The γ -function

Definition/Proposition

Given a skew bracoid $(G, \cdot, N, \star, \odot)$, we define the map $\gamma: (G, \cdot) \to \mathsf{Perm}(N, \star)$, sending g to γ_g , by

$$\gamma_{\mathsf{g}}(\eta) = (\mathsf{g} \odot \mathsf{e}_{\mathsf{N}})^{-1} \star (\mathsf{g} \odot \eta),$$

for $g \in G$ and $\eta \in N$.

Then γ is in fact a homomorphism, with image in Aut(N, \star). We call this map the γ -function of the skew bracoid.

Recall that this is the backbone of the route from a skew bracoid to a solution to the Yang-Baxter equation.

The γ -function of an almost classical skew bracoid

Let (G, N) be an almost classical skew bracoid with H such that $G \cong H \rtimes S$ and (H, N) is essentially a trivial skew brace.

Let $h, h_{\eta} \in H$ and $s \in S$ then,

$$\gamma_{hs}(h_{\eta} \odot e_{N}) = (hs \odot e_{N})^{-1} \star (hs \odot (h_{\eta} \odot e_{N}))$$

$$= (h \odot e_{N})^{-1} \star (hsh_{\eta} \odot e_{N})$$

$$= (h^{-1} \odot e_{N}) \star (hsh_{\eta}s^{-1} \odot e_{N})$$

$$= sh_{\eta}s^{-1} \odot e_{N}.$$

So we conjugate by the S part and the H part acts trivially.

Example

In the $G = \langle r, s \rangle \cong D_{2n}$ acting on $N = \langle \eta \rangle \cong C_n$ example, using $R = \langle r \rangle$, we have $\gamma_{rici}(\eta^k) = s^j r^k s^{-j} \odot e_N = \eta^{(-1)^{jk}}$.

The Yang-Baxter Equation

Definition

A solution to the set-theoretic Yang-Baxter equation (hereafter simply a solution) is a non-empty set G, together with a map $r: G \times G \to G \times G$ satisfying

$$(r \times 1)(1 \times r)(r \times 1) = (1 \times r)(r \times 1)(1 \times r)$$

as functions on $G \times G \times G$.

Given a solution r on G, for all $x, y \in G$ we write

$$r(x, y) = (\lambda_x(y), \rho_y(x));$$

so that we have family of maps $\lambda_X:G\to G$ and a family of maps $\rho_Y:G\to G$.

Properties of the Solution

Suppose G with r is a solution and write $r(x, y) = (\lambda_x(y), \rho_y(x))$. We say this solution is:

- bijective if r is bijective;
- *left non-degenerate* if λ_x is bijective for all $x \in G$;
- right non-degenerate if ρ_y is bijective for all $y \in G$;
- non-degenerate if r is both left and right non-degenerate.

Example

- The trivial solution r(x, y) = (x, y) is bijective and degenerate.
- The twist solution r(x, y) = (y, x) is bijective and non-degenerate.

Solutions from skew bracoids

Let (G, N) be a skew bracoid that contains a brace (H, N). We have that the map $a: h \mapsto h \odot e_N$ is a bijection between H and N, we write b for its inverse. Recall that with this we can define

$$\lambda_{\mathsf{x}}(\mathsf{y}) = \mathsf{b}(\gamma_{\mathsf{x}}(\mathsf{y} \odot \mathsf{e}_{\mathsf{N}}))$$

and then

$$\rho_y(x) = \lambda_x(y)^{-1} x y,$$

for all $x, y \in G$.

This λ and ρ form a Lu-Yan-Zhu pair so that G with $r(x,y)=(\lambda_x(y),\rho_y(x))$ forms a (right non-degenerate but possibly left degenerate) solution.

A matched product

Given this setup, we have that

- H with r is a bijective non-degenerate solution the one coming from the (essentially a) skew brace (H, N);
- and restricting to S we have

$$\lambda_{s_1}(s_2) = b(\gamma_{s_1}(s_2 \odot e_N)) = e_G, \qquad \rho_{s_2}(s_1) = s_1 s_2.$$

for $s_1, s_2 \in S$, so we get an entirely left degenerate sub-solution - if you like, the one coming from the skew bracoid $(S, \{e\})$.

In general, the solution on G is a matched product of these two sub-solutions. This via $\alpha:S\to \operatorname{Perm}(H)$ and $\beta:H\to \operatorname{Perm}(S)$ given by $\alpha_h(s)=(\rho_{h^{-1}}(s^{-1}))^{-1}$ and $\beta_s(h)=\lambda_s(h)$.

Solutions from almost a skew brace

If the skew bracoid (G, N) is almost a skew brace, so our complement H to S is normal in G, the actions $\alpha : S \to \mathsf{Perm}(H)$ and $\beta : H \to \mathsf{Perm}(S)$ are transparently the actions of S on H and H on S within G. For $S \in S$ and $S \in H$ we have,

$$\beta_s(h) = \lambda_s(h) = b((s\odot e)^{-1}(s\odot (h\odot e))) = b(sh\odot e) = shs^{-1}.$$

and

$$\alpha_h(s) = (\rho_{h^{-1}}(s^{-1}))^{-1}$$

$$= (\lambda_{s^{-1}}(h^{-1})^{-1}s^{-1}h^{-1})^{-1}$$

$$= ((s^{-1}h^{-1}s)^{-1}s^{-1}h^{-1})^{-1}$$

$$= (s^{-1}hss^{-1}h^{-1})^{-1}$$

$$= s.$$

Almost classical solutions

Suppose (G, N) is almost classical due to a subgroup H of G, i.e. (H, N) is essentially trivial. Taking $h_1, h_2 \in H$ and $s_1, s_2 \in S$, the solution arising from (G, N) is the given by

$$\lambda_{h_1s_1}(h_2s_2) = b(\gamma_{h_1s_1}(h_2 \odot e_N))$$

$$= b(s_1h_2s_1^{-1} \odot e_N)$$

$$= s_1h_2s_1^{-1},$$

$$\rho_{h_2s_2}(h_1s_1) = s_1h_2^{-1}s_1^{-1}h_1s_1h_2s_2.$$

Note that restricting to H we recover the solution given by

$$\lambda_{h_1}(h_2) = h_2, \qquad \rho_{h_2}(h_1) = h_2^{-1}h_1h_2,$$

which is a solution coming from the group H.

Almost Classical Running Example

Example

In our $(G, N) \cong (D_{2n}, C_n)$ example taking the complement $R = \langle r \rangle$ we have

$$\lambda_{r^i s^j}(r^k s^\ell) = s^j r^k s^{-j}$$
$$= r^{(-1)^j k},$$

and

$$\begin{split} \rho_{r^k s^\ell}(r^i s^j) &= s^j r^{-k} s^{-j} r^i s^j r^k s^\ell \\ &= r^{-(-1)^j k + i + (-1)^j k} s^{j + \ell} \\ &= r^i s^{j + \ell}. \end{split}$$

Hence G with $\mathbf{r}(r^i s^j, r^k s^\ell) = (r^{(-1)^{jk}}, r^i s^{j+\ell})$ is a solution.

Almost a skew brace Running Example

Example

Suppose now that n is even and take the complement $H = \langle r^2, rs \rangle$ to S in $G \cong D_{2n}$.

It is convenient to transfer the operation from N onto H. To do this note that

$$b(\eta) = rs$$
, $b(\eta^2) = r^2$, $b(\eta^3) = r^3s$, $b(\eta^4) = r^4$, ...

so we may think of H as a subgroup of $C_n \times C_2$ with rs as a generator.

Then the action of G on H can be thought of as $r^i s^j \odot (rs)^k = (rs)^{(-1)^j k}$, essentially as before.

Almost a skew brace Running Example

Example

Then with the skew bracoid written (G, H) we have,

$$\lambda_{r^{i}s^{j}}(r^{k}s^{\ell}) = b(\gamma_{r^{i}s^{j}}((rs)^{k}))$$

$$= b((rs)^{(-1)^{j}k})$$

$$= b(r^{(-1)^{j}k}s^{(-1)^{j}k})$$

$$= r^{(-1)^{j}k}s^{k},$$

$$\rho_{r^{k}s^{\ell}}(r^{i}s^{j}) = \lambda_{r^{i}s^{j}}(r^{k}s^{\ell})^{-1}r^{i}s^{j}r^{k}s^{\ell}$$

$$= s^{k}r^{-(-1)^{j}k}r^{i+(-1)^{j}k}s^{j+\ell}$$

$$= r^{(-1)^{k}i}s^{j+k+\ell}.$$

Hence G with $\mathbf{r}(r^i s^j, r^k s^\ell) = (r^{(-1)^j k} s^k, r^{(-1)^k i} s^{j+k+\ell})$ is a solution.

Open Questions

- What does this mean for the study of solutions using skew bracoids?
- I didn't give the solutions coming from the non-reduced skew bracoids, partially because they were a pain - especially in general am I missing something?
- How is the solution on a skew bracoid related to the solution on its reduced form?

Thank you for your attention!